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Abstract

A ‘mixture model’ for the macroscopic motion of a buoyant suspension is formulated in terms of volume
averaged velocities in order to ensure well-posedness of the incompressibility constraint. Conservation laws
for mixture volume, momentum and the dispersed phase are complemented by a heuristic closure for the
relative motion between the two phases. An efficient hybrid method for numerical simulation of mixture
flows in arbitrary two-dimensional and axi-symmetric geometries is presented. The spatial discretisation is
based on an /-type finite element method with use of a local, stabilizing upwind finite difference scheme for
the advective term. Time-step and incompressibility constraints are decoupled through splitting and
pressure-correction methods. The conservation equation for the dispersed phase is treated by a finite
volume Roe solver with a slope limiter which ensures second-order accuracy in regions where the volume
fraction is varying smoothly. Three separate applications of the code are presented to assess the validity of
the various discretisation methods. The classical problem of one-dimensional batch separation is revisited
and the exact analytic solution is used to evaluate the performance of the finite volume Roe solver. The
results of a previous numerical simulation of spin-up from rest of a mixture are shown to be in good
agreement with those produced by the current method. A numerical simulation of gravity settling under-
neath a curved wall (the Boycott effect) is presented for the intermediate parameter regime where both
viscous and inertial effects are important. The first three terms of a Blasius series expansion for the velocity
field adjacent to the curved wall are provided for comparison with the numerical results. The numerically
obtained velocity profile is observed to adjust slowly to the similarity solution. In addition to verifying the
global balances obtained from kinematic considerations, the simulations provide new physical insight
about the interior flow-field. Notable features are the possibility of pure-fluid entrainment into the mixture
region, and a stratification of the horizontal mixture—pure fluid interface due to an oscillatory vortex
motion.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Recent advances in super-computing have made direct numerical simulation of multi-phase
flow a feasible tool for resolving complex design and calibration problems. The numerical dis-
cretisation schemes derived herein rely on the ability of a ‘mixture’ or ‘diffusion’ model to describe
the macroscopic motion of a suspension. Numerous studies (Kynch, 1952; Acrivos and Her-
bolzheimer, 1979; Schneider, 1982; Greenspan, 1983; Greenspan and Ungarish, 1985; Schaflinger,
1997; Ungarish, 1991) have provided ample evidence that these models successfully predict the
main flow characteristics of separating mixtures. Thus, any consistent discretisation based on a
mixture model is expected to capture the same features while also being subjected to the limita-
tions thereof. Amberg and Ungarish (1993) showed how existing single-phase codes may be ex-
tended to mixture flow by the inclusion of an additional equation for the volume fraction of the
dispersed phase. They used finite difference methods to simulate spin-up from rest of a buoyant
mixture in a circular cylinder. For simple geometries such as this one it is preferable to use regular,
structured grids for which algebraic systems, amenable to solution by fast banded algorithms, are
obtained. In a multitude of industrial applications, separation is more efficiently achieved in
multiply connected domains enclosed by slanted or curved boundaries. This motivates the use of
numerical discretisation schemes based on conforming, irregular grids with high resolution in the
vicinity of corners and in boundary layers. Recently, Subia et al. (1998) used a finite element
computer code to study shear-induced migration of neutrally buoyant suspensions at low to
moderate Reynolds numbers. In their study, computational efficiency was not a primary con-
sideration and the resulting algebraic systems were solved implicitly at each time-step. For sep-
arating suspensions at large Reynolds numbers, the ratio of time-scales associated with separation
to those associated with the formation of viscous boundary layers can become considerable. This
poses a higher demand on computational efficiency.

The object of the current study is to develop a framework for numerical computations of
separating suspension flows in arbitrary multi-dimensional configurations. To achieve a high
degree of geometric flexibility, the spatial discretisation is based on an A-type finite element
method (Strang and Fix, 1973). This method is combined with a local finite difference scheme for
the advective derivative in the momentum equation and a finite volume scheme for conservation
of the dispersed phase, both of which employ the finite element grid for their implementation.
Time derivatives are exclusively discretised using finite difference methods. Splitting and projec-
tion methods are used to circumvent time-step restrictions and nested iterative solves respectively.
In Sections 2 and 3, the mathematical model and the numerical discretisation schemes are pre-
sented.

In Section 4, three separate applications of the code are presented to evaluate its performance.
The kinematic problem of batch separation between horizontal boundaries has an exact solution
which is used to assess the performance of the shock-capturing finite volume scheme for the
dispersed phase. Spin-up from rest of a mixture of light particles has previously been studied by
Amberg and Ungarish (1993). Both numerical and asymptotic results are found to be in good
agreement with those obtained from the present simulations. In addition, the boundary layers on
the horizontal plates close to the axis of rotation are essentially of the von Kdrman type, which
allows further comparison with asymptotic theory. While the first two examples are mainly
provided to show consistency of the numerical schemes, the third application demonstrates the
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geometric flexibility of the method by using different resolution in different parts of the compu-
tational domain. For gravity settling underneath a curved wall, the flow field is strongly domi-
nated by the dynamics in a thin layer of pure fluid (the so-called Boycott layer) adjacent to the
downward facing curved boundary. It is essential that this layer is adequately resolved in order to
obtain useful results. A double Blasius series expansion for the flow in the Boycott layer and in the
adjacent mixture region is presented. Comparisons with numerical results at a few positions along
the curved wall show a relatively slow adjustment to the assumed similarity behavior. In addition
to verifying the global balances obtained from kinematic considerations, the simulation also
provides some new physical insight. The most notable features are the possibility of pure-fluid
entrainment into the mixture region by a strong vortex localized to the top of the Boycott layer,
and a stratification of the horizontal mixture—pure fluid interface resulting from the oscillations of
a secondary vortex.

Although most of the qualitative results may be verified experimentally, quantitative com-
parisons will have to be deferred at this stage. Unfortunately, non-intrusive concentration and
velocity measurements rely on rather expensive resonance imaging techniques and have so far
been limited to evaluation of constitutive parameters in collision models (Phillips et al., 1992).
Furthermore, current limitations on the sampling speed restrict the applicability of these methods
to slowly evolving flows.

2. Formulation

Consider a mixture comprised of non-colloidal, spherical particles of radius a dispersed in a
continuous fluid. Both constituents of the mixture are assumed to be incompressible. The equa-
tions will be expressed in terms of volume averaged flux densities, which in short will be referred to
as velocities. In order to distinguish between volume averaged flux densities and mass averaged
flux densities, the former are denoted by j:s and the latter by v:s. Subscripts C, d and R refer to the
continuous phase, the dispersed (solid) phase and to the relative motion between the two phases.
Mixture quantities are written without a subscript. All dependent variables are considered to be
functions of space x and time ¢. The volume fraction (concentration) of particles in the mixture is
represented by the variable ¢. The density of the mixture is given by

p=ps+(1=9)pc = (1+ed)pc, (1)
where
Pa — Pc
= 2
is the reduced density difference. The volume flux for each phase is given by
ia = ®va, (3)
ic=(0—¢)vc. (4)

Volume averaged and mass averaged flux densities of the mixture can then be expressed as

§=Ja +lc (5)
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v— $pgva + (Ilo— $)pcve . (6)

Flow quantities describing the relative motion between the two phases are defined by the fol-
lowing relationships:

VR = Vg — ¥V, (7)
iR = ¢(1 — P)wr, (8)

where jy is the ‘drift flux’ (see Schneider, 1982). A useful relationship between the drift flux and the
particle and mixture fluxes is

o=l + ¢J. (9)
The hydrodynamics of the mixture are described by a set of conservation laws for mixture

momentum and for each phase. These are complemented by a heuristic closure for the drift flux.
Conservation of the dispersed and continuous phases is expressed by

0¢

i i.=0 10

al + \Y Ja ) ( )

o(1-¢) .

T‘FV-]C—O. (11)
Adding Egs. (10) and (11) gives an expression for the conservation of mixture volume:

Ve(ig+ic)=0=V-j=0. (12)

On averaging the rate of change of momentum of both phases (see Appendix A) and simplifying
the result using the previously stated kinematic relationships, the following momentum equation
is obtained:

0. . irIr Elal 1
—({+ey)+V- i+ + =—V -2+ (1+ep)f. 13
0+ H-9) 9 | pe ETUT) )
In Eq. (13), fis the body force which henceforth will be assumed to be conservative. A generalized
Newtonian relationship is specified for the stress tensor:

2 = —PL+nyn(®)[Vi+ (Vi)'] (14)

Here, P is the pressure, n(¢) is the effective suspension viscosity and 7, is the dynamic viscosity of
the suspending fluid. The expression used here for the effective viscosity is a semi-empirical cor-
relation of the type suggested by Krieger (1972),

mwz@—ﬁﬁK% (15)

where ¢, is the maximum packing, taken to be 0.68 and K = 2.5. While expressions (14) and (15)
are unable to capture the detailed dynamics of the sediment regions, they give good estimates of
where in the computational domain sediments will be deposited. Rearranging the terms in Eq. (13)
and introducing the reduced pressure, p, for a conservative body force, leads to
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S Vi= o Tp ¥ )T+ ()] - V|
Ol Jala
_8{E+V'<?>_¢f} (16)

Hence, the relative density difference induces a forcing, proportional to the effective acceleration
of the dispersed phase. A closure for the drift flux is given by:

L 2 (1 - ¢)
)

which is valid for non-interacting particles in quasi-steady creeping motion relative to the fluid.
For a more detailed discussion on this type of closures, see Ungarish (1993). Additional terms,
accounting for shear-induced particle migration (Phillips et al., 1992), may be added to expression
(17). For gravity induced phase separation, the ratio of the buoyancy flux to the migration flux
scales as egL/(vy7), where j is the local shear-rate and L is the characteristic length-scale of the
flow field. In what follows, this ratio is assumed to be small such that shear-induced migration is
negligible compared to the buoyancy flux. The standard no-flux and no-slip conditions are im-
posed on the mixture velocity j. The latter of these is obviously an approximation since particles
may slide or roll along a solid boundary. A macroscopic model for the apparent wall slip velocity
has been suggested by Jana et al. (1995). The slip velocity was shown to be given by Us = f(¢)a7,
where f(¢) becomes large as ¢ approaches maximum packing and vanishes for ¢ < 0.4. Thus, in
spite of the small values of a, U; may reach appreciable levels at high particle concentrations. At
such levels, however, the approximations (14) and (15) do not warrant the additional level of
complexity involved in attempting to isolate the effects of wall slip in the numerical simulations.
Inflow conditions are specified for the particle flux j; when applicable, and on solid boundaries,
the normal component of the particle flux is set equal to zero. Eq. (12) is the reason why j was
chosen over v as the principal variable in the momentum equation. The numerical treatment of the
incompressibility constraint is facilitated if the no-flux condition is imposed on j instead of on v.
Solutions to Eq. (10) involve kinematic shocks representing interfaces between pure fluid, mixture
and sediment. In addition to the aforementioned boundary conditions, shock-conditions given in
Appendix A must also be satisfied. While the preceding model does not give a complete de-
scription of suspension flows in general, it will be shown to capture the fundamental features of
buoyancy driven phase separation.

i
I i.Vi—f 17
{atﬂ Vi ] (17)

3. Numerical discretisation

For the purpose of describing the numerical methods, the following form of the mixture-model
equations will be considered:

Vi = = Tp V- @)V + (7)) +F. 18)
Pc

v-j=0, (19)



988 M.S. Nigam | International Journal of Multiphase Flow 29 (2003) 983-1015

0¢

5, TV =0, (20)
2 p(1—¢) [0 . .

]R——Ww[a—i‘]'vl—f} (21)

ja = ir + i (22)

Here, F represents the extra stress due to the relative motion and the forcing induced by the
density difference between the two phases. a is the particle radius and g is the constant of gravity.
The equations are solved in a region # with boundary 0% for times 0 < ¢< 7. The mixed initial/
boundary value problem defined in (18)-(22) is treated by a method of lines approach, which
separates the spatial and temporal discretisations. The temporal discretisations are exclusively
accomplished by finite difference methods while the spatial discretisations use a combination of
finite elements, finite differences and finite volumes. Egs. (18) and (19) resemble a Navier—Stokes
system, and the numerical solution procedure for such is governed by standard methods which
will only be briefly outlined in this section. The attention will instead be focused on the advection
problem for the dispersed phase, Eqgs. (20)—(22).

3.1. Temporal discretisation of the momentum equation

The viscous term in (18) is treated implicitly to avoid unnecessarily severe restrictions on the
time-step. Hence, the time-step is restricted by a CFL-type (Courant et al., 1967) condition due to
the explicit treatment of the non-linear term. An operator-integration-factor technique by Maday
et al. (1990) is used to split problem (18) and (19) into an advective part and a Stokes part. The
motivation for this is to decouple the CFL-limited advection steps from the Stokes solver. This
way a larger time-step may be used for the computationally expensive Stokes problem. For
second-order backwards differentiation, the OIF splitting yields the following subproblems:

3 T 1 2. |
- on _ . n on on _ 71 —_ on o on Fl‘l 2
aad V@)V + (VIO -V =Tl - sk A F (23)
V=0, (24)
where if = j.(x, ") are obtained from the pure advection problem

oi; .

RN v 2
5 71 Vi=0, (25)
(e = (). (26)

The temporal discretisation of problem (25) and (26) is accomplished by a fourth-order Runge—
Kutta scheme with a time-step which satisfies the CFL condition. The values of j needed in the
Runge-Kutta evaluations of (25) are interpolated from the velocity fields at previous time-steps,
G"",i"%,i"), (see Appendix B). Interpolation is also used in evaluating the terms comprising F”
in Eq. (23). The accuracy of the combined problem (23), (24) and (25), (26) is O(A#*). In addition
to the temporal OIF splitting, the incompressibility constraint in the Stokes problem is decoupled

through an O(A#?) pressure-correction method:
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3 . . e\ T 1 1
T ek . n * * - _ 7 fn 2
sl VY (") (Vi + (Vi) )] o Vp' T+ 1 (27)
2 At
i =j —=—Vbp, 28
i T (28)
V-i"=0, (29)
p=p"" +dp, (30)

where " includes all terms on the right-hand side of Eq. (23). j* is chosen to satisfy the same
boundary conditions as j’, which is consistent for Dirichlet conditions.

3.2. Spatial discretisation of the momentum equation

The particular class of problems of interest here is multi-dimensional incompressible flow
problems in arbitrary geometries with expected irregularities in some of the dependent variables.
These irregularities are due to discontinuities associated with interfaces between pure fluid,
mixture and sediment. A Galerkin finite element method was chosen for the spatial discretisation
of Egs. (23) and (24). In addition to being able to discretise arbitrarily complex configurations, it
provides easy use of unstructured grids with enhanced resolution in regions with large gradients.
It also allows for a natural extension to adaptive methods. The Stokes problem is recast in an
equivalent variational form, (j°,p") € (X¥,X?), from which a finite element discretisation is
achieved by restricting j* and p" to conforming finite-dimensional subspaces (j;,p}) € (X}, X)),
where X;) C X¥ and X C XP. Before stating the variational problem, j; is divided into two parts:
i = I T Ipp» Where j;; = 0 on 02 and j,, is the prescribed boundary condition. The variational
equivalent of Egs. (27)-(30) is given below.

Find jj, € X}, and p} € X} such that:

3 o n ok ox 1 51— n

2 At (]hovv) + VO(”(d)h)[v]ho + (vlho)TL Vy) = — A 1’ V.v)+ (fhb, v), (31)

Pc

2At o o

E(v‘]vvsph) = (4, V Ti0) — (@ V - Jjo), (32)

_(qa V- ]ZO) = (qu V- ij)? (33)
o e 2 At

(]h07 V) = (JhOa v) + EV (Opn, V - V), (34)

Pc
pi=p," + 3pu, (35)

Vv € X}, and Vg € X}.

Xy, 1s the finite-dimensional velocity subspace restricted to homogeneous Dirichlet conditions. Eq.
(32) was obtained by multiplying Eq. (28) through by the gradient of the test function ¢ and
integrating the first term on each side of the equation by parts. The boundary integrals cancel
since j,;, = jj,- The linear terms in f;, which now includes the boundary forcing are restricted to
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the subspace X, together with ¢;. The non-linear stresses, induced by the density difference and
the relative motion between the two phases respectively, are treated by a group finite element
approach (Fletcher, 1983). Hence, the expression:
irir eala
+ (36)
o(1—9) ¢
is evaluated nodally and projected onto the subspace X;'. Since j,, and v belong to the same

subspace, the method is of the Galerkin type. The inner product in (31)—(35) is defined for all
square integrable functions in Z as

Yo e L) (ph) = / () (x) dx, (37)

where the integrals are evaluated using Gauss quadrature (see Strang and Fix, 1973). Triangular
elements with first-order tensor-product polynomials were used for both velocity and pressure,
yielding a discretisation error of O(/?) in terms of the .#*-norm, where 4 is the grid parameter.
Spurious pressure modes, excited by discretisations with equal order tensor-product polynomials
for velocity and pressure, are successfully suppressed through the introduction of Eq. (32). Hence,
divergence stabilization is here obtained by inverting a discrete Laplacian to find the pressure
increment. The discrete linear system corresponding to (31)—(35) is given in Appendix C.

For the spatial discretisation of the advective term in (25), a third-order accurate upwind, finite
difference formula of the type proposed by Tabata and Fujima (1991) has been implemented. At
each grid point x;, the advective derivative is discretised along the direction of the local velocity
vector using three additional points, one downwind and two upwind. The additional discretisation
points were chosen to be the points at which a straight line, parallel to the nodal velocity vector,
crosses element boundaries (Fig. 1). The finite difference discretisation is based on the following
expansion of the advective derivative for a scalar function ¢(x):

i V0l = i)l | (54 hf ) + o)
rexo(s iy ) + ooy ) + oty o

1

=

Fig. 1. Finite difference discretisation points for advection of momentum.

\



M.S. Nigam | International Journal of Multiphase Flow 29 (2003 ) 983-1015 991

Here h;, [ =1,2,3 is the distance from x; to discretisation point / and the coefficients ¢,,
1 =0,1,2,3 are given by

o hyhs

YT (b + b)) (b + b))
o hihs

? ha(hy + hay)(hs — hy)’ (39)

hihy
3 = )
hy(hi + h3)(hs — hy)

Co = —C1 —Cr — C3.

The values of ¢(x;) at the discretisation points are computed from the finite element basis
functions. The spatial discretisation of problem (25) and (26) is readily obtained from (38) and
(39) by substituting the components of j, and j, for ¢. Upwinding stabilizes the scheme in the
sense that it allows for a larger cell Peclet number (in terms of the Reynolds number Re = UL /v,
and the grid parameter s, Pe = hRe) to be used in the simulations.

3.3. Numerical discretisation of the advection equation for the dispersed phase

This section is concerned with the pure advection problem (20)—(22) and the numerical treat-
ment of the associated discontinuities. The approach, taken here, is of the ‘shock-capturing’ type
and adds a small amount of diffusion to stabilize the numerical method. Hence, the discontinuities
will be represented by thin but finite transition regions rather than sharp jumps. The simplest way
of accomplishing this is to use first-order upwinding, which introduces an O(%) diffusive error
term. In order to limit this error to regions where it is necessary for numerical stability, a slope-
limiting scheme is applied. On regular grids, these methods have been shown to give a substantial
improvement over first-order upwinding methods (LeVeque, 1990). For irregular grids, the ap-
plication of slope limiters becomes more complicated. Lohner (1988) developed a flux-corrected-
transport scheme in the finite element context. However, as will be shown in the next section,
because the limiting procedure does not take into account the direction of wave-propagation, it
may sometimes produce solutions which do not comply with the proper entropy condition. For
the problem considered here, a finite volume scheme was developed. In addition to being con-
servative, the finite volume method is easy to use with the already supplied finite element mesh,
and the finite element basis functions provide a natural tool for the reconstructions which are
necessary for the higher-order correction. The average value ¢, on each element #*, is used to
evaluate local fluxes jﬁ’i from (21) and (22) for each vertex i of the element,

G260 (L ¢ T0 s

W= lat (- Vi), —fi| + ¢, (40)
where the advection term is evaluated from the previously described four-point finite difference
formula and the time derivative is obtained from a second-order backwards differentiation scheme
(see Appendix B). The elemental fluxes jﬁ(x, t) are thus represented by first-order tensor-product
polynomials which are discontinuous across element boundaries 0%*,
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3

() =) ' (00" (x), (41)

i=1

where ¢“/(x) is the finite element basis function on element #* corresponding to vertex i. Next, a
low order estimate of ¢* at 7 + A¢/2 is obtained by integrating Eq. (20) over each element:

] LA
B+ 8/D) = F0 =555 § i) -ads )

where 7, and 0%* are the volume and surface of the element, and # is the outward surface
normal. The fluxes jﬁ(x7 t) are replaced by upwind fluxes where the upwind directions are given by
the directions of propagation of the jump discontinuities across element boundaries. Using the
notation of Fig. 2, the upwind flux at vertex i is given by

~ olji ki

supwind,i - sli A n-()y — 4 ki ol ~

oty e m | 20 ) gy (43)
o —¢

supwind

where H is the Heaviside function. Since j;”" (x, ¢) is represented by the local finite element basis
functions, which are first-order polynomials along each elemental boundary segment, the surface
integrals are easily evaluated analytically. Second-order accuracy is here obtained by a MUSCL-
type method. The low order solution ¢"(¢+ Ar/2) is used to estimate the gradients of ¢ at
t + At/2. First, ¢ is reconstructed using the finite element interpolation functions,

¢m = Mi,},m Imkd_)kv (44)
k
where
Imk = / (pm(x)dV‘ (45>
V ok

¢,,(x) is now the finite element basis function associated with the global node m and My, is the
lumped finite element mass matrix. Next, the average of the derivative of ¢ with respect to x, on
element #* is given by

Fig. 2. Evaluation of upwind fluxes.
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(ax,,> 7 / S (46)

This yields a second-order reconstruction at the intermediate time level z + Az/2,

e so(2) )

where x!/ is the value of coordinate x, at vertex i of element #* and x¢,, is the value of x, at the
center of the element. 6 are slope limiters which are applied to enforce monotonicity. The limiting
procedure is equlvalent to that of Peyrard and Villedieu (1998) except that separate limiters are
used for each coordinate direction,

i : max min
0% = min(1, 07, ™), (48)
max d_)max B d_)q
Hp = Am‘dx ? (49)
pr
) Jq _ gmin
9;““ = il d) , (50)
A;nm

where ¢™* and (f_f_nin are the maximum/minimum values of the elements neighboring the boundary
segments of #*. ¢? is given by ¢? = max(¢™", min(¢*, $™)) and

max aqs ¢ i
min : 6(}3 ¢ i
AN = ‘m}n{(a—xp) (x’;’ —x’ép)} : (52)
Hence, the second-order update of ¢* at time 7 + At is given by,
- - At
(14 Ar) = ¢* (1) — 7 yf is(x, ¢+ At/2) - ads, (53)
a* Jon*
i(x, 14+ A1)2) = Z APV AE)2) " (), (54)
oeli sk
.upwind,i o oli - n-(l; — 14 ki oliN o
R R S R 59
o=
G 2ea QM= MR
W= = ) 5, T - Vi) =i + i, (56)

where (56) is evaluated at ¢ + Az/2 and ¢ is obtained from (47). Once ¢ at time " has been
updated, the nodal values of ¢" to be used in the finite element discretisation of the momentum
equation are readily obtained from (44) and (45).
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Each time-step, n, in the numerical implementation is initiated by updating the volume fraction
¢". This is followed by the pure advection problem for j| and j;. Due to the explicit treatment of
these subproblems, only diagonal solvers are needed in the Runge—Kutta evaluations. Finally, the
Stokes problem is solved using the conjugate gradient method preconditioned by incomplete
Cholesky factorizations.

4. Applications to buoyant suspension flows

In this section, three separate applications of the code are provided. The first application treats
the one-dimensional settling problem in a vessel of finite height. For this problem, the mixture-
model equations have an exact solution which is used to validate the finite volume scheme for the
dispersed phase. The second application treats spin-up from rest of a mixture of light particles in
the absence of gravity. A previous numerical study of this problem is provided by Amberg and
Ungarish (1993) and the results of the current method are easily compared to theirs. In addition,
the flow close to the axis of rotation is essentially described by the classical von Kdarman solution
which is therefore used to validate the numerical discretisation of the non-linear advection terms.
The third application is a study of gravity settling underneath a curved wall (the Boycott effect)
for the intermediate parameter regime where both inertial and viscous effects are important. The
study is used to demonstrate the generality of the numerical method to arbitrary configurations
and the ability to use different resolution in different parts of the computational domain.

4.1. One-dimensional gravity settling

Consider a homogeneous mixture of heavy particles (¢ > 0) separating vertically under the
influence of gravity between two horizontal boundaries. As the particles move away from the
upper boundary, a layer of clear fluid is produced in the upper part of the domain, and the particles
settling on the lower boundary compact into a sediment. Let z* denote the coordinate in the
vertical direction and let the horizontal boundaries be located at z* = 0 and z* = H* respectively,
where asterisks denote dimensional quantities. Assuming that the fluid is initially at rest, the
continuity equation,

dj:

57
dz+’ (57)
together with the boundary conditions ;¥ = 0 at z* = 0, H* gives,

Ji=0. (58)

Hence, the balance in the momentum equation is purely hydrostatic. By scaling z* with H* and
time with H*/U;, Eqgs. (20)~(22) simplify into,

0¢  0®(¢)
§+ Oz

=0, (59)
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o(1 - ¢)°
n(e)

The solution to this problem is found by the method of characteristics as shown by Kynch (1952).
Two kinematic shocks, separating regions of pure fluid and mixture, and mixture and sediment,
form at the onset of the separation process. Hence, the volume fraction of particles in the mixture
bulk remains at its initial value, which will be denoted by ¢(0), and the shock-speed for the in-
terface separating the pure-fluid region from the mixture bulk is given by,

dzy _ 9(9(0) = 2(0) _ 9(9(0)) )

dt ¢(0) -0 ¢(0)
where z,(0) = 1. The volume fraction on the lower boundary instantly reaches maximum packing
(¢p)- Due to the particular choice of the expression for #7(¢), a kinematic shock connecting the
constant states ¢(0) and ¢y does not satisfy the proper entropy condition. Instead, a weaker
shock appears and the sediment region is described by a rarefaction wave in which the volume
fraction smoothly approaches ¢, at the lower boundary. The flux function @(¢) is shown in Fig. 3
together with a solid line connecting the states ¢(0) and ¢),. The speed of the characteristics is
given by the slope of @ and the speed of the shock is given by the slope of the solid line. It is
observed that for ¢p > 0.53, the speed of the characteristics is less than the shock-speed and thus,
the shock would move away from the characteristics. Also shown in Fig. 3 is the weaker shock

P(¢) = — (60)
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0.04} ~ 4
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Fig. 3. The flux function @(¢). Also shown is an entropy violating shock connecting the states ¢(0) and ¢y (solid line)
as well as a weaker shock satisfying the proper entropy condition (dashed line).
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(the dashed line which is tangent to @ at ¢ ~ 0.53). The solution to the problem for 0 < ¢ < #gpa1,
where fgn, 1S the time when the mixture—pure fluid interface reaches the mixture-sediment in-
terface, may be summarized as follows:

¢(z,t) =0 forz,<z<1,
d(z,t) = ¢(0) for z, < z < z,,
D(zs, 1) < Plz,1) < Py for 0 <z <z,
where the position of the mixture—sediment interface is given by,

dzy _ P(¢(z,1)) — P(¢(0))

s 62
a6 90 %)
with z(0) = 0. The volume fraction in the rarefaction wave is given by,
dz. do
¢(z,1) = ¢(z(t)) on & dg’ (63)
where
z(0) =0 and @(z,1) < P(z(1) < P (64)

The value ¢(z,, 1), needed in Eq. (62), is obtained by applying a shooting method to find the
characteristic z.(¢) = z, from Egs. (63) and (64). The solution at z = 1 with ¢(0) = 0.1 and ®(¢)
given by Eq. (60) is shown in Fig. 4 (solid line). Also shown is the result of the finite volume

T T T T T T T T

0.4} kil R

0.3r b

0.2 4

0.1

0 1
0 0.1

Fig. 4. The volume fraction field for one-dimensional gravity settling at ¢ = 1. The solid curve represents the results of
the characteristics method, the stars represent the results from the finite volume computation and the circles represent
the results from the FEM-FCT computation.
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scheme described in the previous section (stars). The computation was carried out on a regular
grid with 100 grid points. In the finite volume computation, the volume fraction at the lower
boundary is ¢(0) = 0.1 at t = 0. Since @ — 0 as ¢ — ¢, it takes an infinite time to reach the
value ¢y, and the values in the sediment region are therefore slightly lower than those predicted
by the characteristics method. Both shock positions agree well with the characteristics method and
the correct entropy condition is satisfied at the mixture-sediment interface. The shocks are
smeared over a couple of grid points by the finite volume scheme. The circles in Fig. 4 represent
the results of the original FEM-FCT scheme proposed by Lohner (1988), and it is immediately
observed that this method is unable to satisfy the correct entropy condition at the mixture—
sediment interface. The reason for this is that the FCT scheme is based on a centered collocation
method where the only limitation on the second-order corrections is that no additional extrema
are created. Hence, the point on the sediment side of the mixture—sediment interface is affected by
the steepening effect of the shock which is really in the downwind direction, and this results in the
plateau shown in Fig. 4. In the finite volume scheme, this phenomenon is avoided by choosing the
upwind flux at each cell boundary. Although, the FEM-FCT scheme in this case is easily modified
to give the correct entropy condition, such modifications become elaborate in higher dimensions
and the finite volume scheme is therefore preferable for the current applications.

4.2. Spin-up from rest of a mixture

A cylindrical container filled with an initially uniform mixture of light particles (particles which
have a lower density than the suspending fluid) is instantaneously set into rotation. Uniform non-
rotating mixture is sucked in by the von Karmadn layers on the horizontal boundaries where it gets
spun-up and expelled radially outwards. The rotating mixture emerges from the boundary layers
at the corners and thereby returns to the interior as spun-up fluid. At the same time the particles
separate radially inward due to local centrifugal forces. The combination of these two effects gives
the mixture—pure fluid interface a characteristic hour-glass-like shape (see Ungarish, 1991).

Consider a straight circular cylinder of height H* and radius {, initially filled with a stationary
mixture of light particles with constant volume fraction ¢(0). Asterisks are again used to denote
dimensional quantities. At time ¢ = 0, the container is impulsively brought to a constant angular
velocity Q" around its axis of symmetry. Effects of gravity are neglected in the analysis. The
equations of motion are made non-dimensional by the following scales: 7 for length, 1/Q" for
time, Q°r; for flux densities, p. for density and pi.(Q°r;)” for pressure:

A i Vi= Y+ BV (@)(Vi+ (V)] - V- [L}

o AV ) ey

oo ()
V.j=0, (66)
W ivii—o .
=PI, (68)
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ia =ir + I, (69)
where the non-dimensional numbers

* * % 29* *2
— ZO -, e = Py Pc and B — a
Qry pE 9§

(70)

are the Ekman number, the relative density difference and the particle Taylor number respectively.
In the limit of £ < 1 and |¢|¢p(0) < 1, Ungarish (1991) derived the following expressions for the
volume fraction in the two regions separated by the spin-up front (r = e ):

¢
Oz

¢ ! 2 e L (P—e™)’ d 1 g(1-9) )0
*r(l—em(( Ve T = e a qs! () D

C(2z-H)eFop 2 pl-¢) (I—et/t)

2L - H) 2 =0, 0<r<e, (71)

S__= <r<l, 2
l—e> 0z Al n(o) (1 —e2)? © " (72)
where
ME't E'/?
— 1/2 — —

In the first region (the non-rotating core) the solution is ¢ = ¢(0). The corresponding expressions
for the velocity field in this region describe a flow from the interior towards the top and bottom
boundaries. At the plates, the fluid is absorbed by the boundary layers where it gets spun-up and
expelled radially outwards. When the spun-up fluid reaches the corners of the container, » =1,
z =0, H, it emerges from the boundary layers into the second region (the region behind the spin-
up front). Hence, the fluid which enters into this region has an initial particle volume fraction of
¢(0). The solution for the dispersed phase in the second region is readily found by the method of
characteristics resulting in a set of ordinary differential equations, which were solved numerically
using a shooting method.

The following parameters were used in the full numerical simulation: aspect ratio H =
H*/ry = 0.5, Ekman number E = 107, particle Taylor number f =4 x 1072, reduced density
difference ¢ = —0.5 and initial volume fraction ¢(0) = 0.1. These parameters which were picked
from Amberg and Ungarish (1993) make the ratio of the separation to spin-up time-scales,
4. =E"Y?/(|e|BH), equal to 1. The simulation was carried out up to ¢ = 150 (corresponding to
about 24 revolutions of the container) on a regularly triangulated grid with 128 radial boundary
points and 64 axial boundary points. The time-step was chosen to be At = 2.5 x 1072, The results
of the asymptotic theory (the numerical solution of Egs. (71) and (72)) have been reproduced here
and are presented together with the numerical results. Fig. 5 shows contours of constant volume
fraction at r = 25, 50, 75, 100. Only the region 0 <z < H/2 is displayed because of symmetry. In
the non-rotating core there is no centrifugal force and therefore no separation takes place in this
region. According to the theory, the extent of the non-rotating core diminishes asymptotically
with time and the spin-up front remains sharp. More advanced analyses on spin-up of a pure fluid
(Venezian, 1970; Hyun et al., 1983) show that the front is actually smeared by viscous effects. This
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Fig. 5. Contours of constant ¢ for various ¢. The levels are 0.025, 0.050, 0.075, 0.095, 0.105, 0.125,...(0.025). Also
shown are the asymptotic spin-up front (dash-dotted) and kinematic shock (dashed).

is also observed in the numerical results. At ¢ = 50, the region where the volume fraction varies
with spatial position extends significantly beyond the theoretically predicted spin-up front. Al-
ready at £ = 100, the fluid is in solid-body rotation and the interface separating the mixture from
the pure fluid has become almost cylindrical. The subsequent motion is of a different nature and
the results of the asymptotic analysis are no longer relevant. At t = 150 (the end of the simula-
tion), the final state of a solid particle core has not yet been reached. Hence, there is still a positive
radial gradient in the volume fraction.

In the asymptotic analysis, presented by Ungarish (1991), it was assumed that the volume
fraction of particles in the boundary layers at the top and bottom plates remained uniform and
equal to the initial value (¢ = ¢(0)). Since the radial outflow in the boundary layers decays with
both r and ¢, there is a radial position where the inward particle flux due to the local centrifugal
force becomes stronger than the outward boundary layer flux. Note that this critical value also
varies with vertical distance from the horizontal boundaries according to the local boundary
layer profiles. For radii larger than the critical value, centrifugal settling occurs, resulting in an
increase in volume fraction. The volume fraction in the part of the boundary layers above and
beneath the non-rotating interior only differs slightly from ¢(0), with deviations being less
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than 5%. At t = 25, the volume fraction in the parts of the boundary layers adjacent to the
rotating part of the mixture increases with about 20%. At ¢ = 50, the deviations are 50% and at
t =75, they are 100%, which corresponds to a 38% increase in the effective viscosity. At this
time, spin-up is essentially complete. Despite the substantial violations of the uniform volume
fraction assumption, the position of the analytically predicted kinematic shock is in good
agreement with the numerical results throughout the spin-up process. A quantitative comparison
between the numerically and analytically predicted radial distributions of the volume fraction at
time ¢ = 50 and axial position z = 0.225 is given in Fig. 6. The theoretical shock is sharp while
the numerical shock is smeared over two or three grid points due to artificial diffusion inherent
in the discretisation scheme. The results obtained here are in excellent agreement with those
presented in Amberg and Ungarish (1993), where experimental results also were provided for
qualitative comparison with asymptotic theory and numerical simulations. Figs. 5 and 6 cor-
respond to Figs. 6 and 10(a) in Amberg and Ungarish (1993). Fig. 5 displays two notable
differences between the current results and those in Amberg and Ungarish (1993), both of which
may be attributed to the higher-order finite volume scheme for the dispersed phase. The first one
is that the region with the highest volume fraction is observed to move away from the center-
line as the mixture approaches solid-body rotation. At this stage, the boundary layer efflux
diminishes and the radial mixture motion in the interior becomes restricted by geostrophic ef-
fects. Hence, recirculation of dispersed matter through mixture motion becomes gradually
confined to thin regions adjacent to the horizontal boundaries and the separation front. These
layers are now of the Ekman type and the characteristic oscillatory behavior is observed for the
horizontal layers. The second difference is the appearance of isolated regions with slightly lower
concentrations at » ~ 0.6 for t = 25 and at r ~ 0.68 for ¢t = 50. In both cases these regions are
trapped within the vortex separating the influx part of the horizontal boundary layers from the
efflux part. A close-up of the concentration contours together with velocity vectors for the
mixture fluid at r = 50 is shown in Fig. 7.

At early times, the horizontal boundary layers above and beneath the non-rotating core are
essentially of the von Kdrman type. This provides a convenient means for validating the nu-
merical treatment of the non-linear terms. Since the boundary layers are being fed from the in-
terior, the only modifications to the classical solution comprise of uniform enhancements of the
density and viscosity (due to the presence of particles), and an adjustment of the boundary
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Fig. 6. Radial volume fraction distribution at time ¢ = 50 and z = 0.225. The solid line represents the result of the
asymptotic theory while the dots represent the result of the numerical simulation.
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Fig. 7. Close-up of an isolated region with slightly lower concentration at # = 50. The solid lines represent concen-
tration contours (see Fig. 5 for labeling) and the arrows represent velocity vectors for the mixture fluid.

condition to comply with the restriction of no net flux across a radial cross-section of the vessel.
Introducing the following radial dependence for the quasi-steady velocity components and
pressure:

u(r,z) = rF(%), o(r,z) = rG(%), w(r,z) = @H(\%),

(74)
(r,2) —Kf+<o@L(i>
p ) 2 \/(? b
where & = n(¢(0))E/(1 + ¢¢(0)), Egs. (65) and (66) reduce to,
F'=F>+HF —G* +K, (75)
G' = 2FG + HG, (76)
H' =HH + L, (77)
H' = -2F, (78)
upon neglecting terms of O(f5). The boundary conditions are given by,
1 1
F(0)=0, G0)=1, H0)=0, G(——=|=0, Hl—= | =0, 79
-0 a0 oo, o{gty) -0 () »

recalling that the center of the vessel is at z = 0.25. By virtue of Eq. (78) and the third condition in
(79), the last boundary condition is equivalent to the requirement fzz :00 PFdz=0 (no net flux
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through a radial cross-section). Eq. (78) was used to eliminate ' from Egs. (75) and (76), which
were subsequently solved by a fourth-order accurate Runge—Kutta scheme, applying a shooting
method to satisfy the boundary conditions at z = 0.25. A comparison between the von Karman
solution and the numerical solution at ¢ = 25 and » = 0.25 is shown in Fig. 8. Despite the rela-
tively small number of discretisation points in the boundary layer, the agreement is excellent.
Ungarish and Greenspan (1983) (see also Ungarish, 1993, Section 5.4) studied the semi-infinite
Kédrman problem in the context of the two-fluid model. Applying a perturbation expansion in the
Taylor number f, they encountered difficulties when applying the no-flux condition at O(f),
which were attributed to a mathematical deficiency in the formulation. The current mixture-model
analysis corresponds to the well-posed leading order problem (O(1)), which becomes identical to
the two-fluid formulation if the viscosities of both phases are taken to be equal. The numerical
simulations did not display any problematic behavior at the top and bottom boundaries. This
might indicate that the mixture model does not suffer from a similar deficiency.

Further validation for the non-linear terms was obtained by showing consistency (to the order
of the numerical discretisation error) between numerical simulations performed in the rotating
and non-rotating reference frames.

4.3. The Boycott effect

Due to its importance in achieving enhanced settling performance in separation processes, the
Boycott effect has become the subject of numerous studies including Acrivos and Herbolzheimer

0.8 B

0.6 4

04} -

Fig. 8. Karman-layer profiles at z = 25 and r = 0.25. The solid lines represent the results from asymptotic theory and
the dots represent the results from the numerical simulation.
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(1979), Hill et al. (1977), Schneider (1982) and Shaqfeh and Acrivos (1986). When a mixture of
heavy particles settles under gravity away from an inclined wall, a thin layer of pure fluid develops
next to the wall. This layer remains thin for the duration of the sedimentation process due to a
balance between buoyancy forces and inertial and/or viscous forces. The buoyant particle-free
fluid in the thin layer rises along the inclined wall at a velocity which is considerably higher than
that of the settling particles in the mixture. Volume conservation requires that this fluid must be
replaced by pure fluid from the mixture bulk. The flow into the pure fluid region counteracts the
gravitational settling of the particles and thus prevents the layer from growing. The persistence of
a thin pure-fluid layer leads to an increase in the area of the mixture—pure fluid interface. Because
the rate of separation is proportional to the horizontal projection of the mixture—pure fluid in-
terface, this effect reduces the total separation time. Much of the literature has been concerned
with the details of the Boycott layer, but the flow in the mixture bulk and especially the flow
reversal in the pure-fluid region developing at the top of the container have received little at-
tention. An interesting variant of the Boycott effect has been observed (Schaflinger, 1997) in a
container with a curved wall. The numerical simulation presented in this section resolves the
details of the Boycott layer underneath a curved wall as well as the complex dynamics of the
horizontal mixture—pure fluid interface.

Consider an initially uniform mixture of volume fraction ¢(0), separating under gravity in a
vessel of height #*, width L* and a curved wall with radius R* = H* (see Fig. 9). Here, z; denotes
the vertical location of the horizontal separation front (the horizontal section of the mixture—pure
fluid interface). A non-dimensional form of the equations appropriate for numerical simulations is
obtained by introducing the following scaling: H* for length, U* = (|¢¢(0)g*H*)"/* for velocity,
H*/U* for time, p¢. for density and |e|¢(0)pg*H* for pressure:

.. o ¢ . 1 . T
v irir Oigq <@>} 80
v ] el v (%) (80
V.i=0, (81)
0¢ B
o +V-ig=0, (82)
R
=2 gy (345 w1) 4], (83)
ia =g + i (84)
The non-dimensional parameters are given by
* L% P ) * 2
Re= UH 2t g 42 <Ii> $(0), (85)
v(’j 9\)(*) 2\ a*

*

where the Reynolds number is based on the settling velocity, U;, of a single particle. The en-
hancement in the settling rate is obtained from PNK theory (Ponder, 1925; Nakamura and
Kuroda, 1937) as the ratio of the horizontal projection of the mixture—pure fluid interface to the
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Fig. 9. Geometric set-up for the inclined settling problem.

horizontal section of the mixture—pure fluid interface. Neglecting the width of the Boycott layer,
this yields

de Re L
i Nl 86
dt A%L—Xf7 ( )

where .o/ = (1 — ¢(0 )) /1n(¢(0)). Eq. (86) may be integrated to obtain an implicit expression for z,

1 — R
zZfy — Zf — i Sil’lil(Zf() ZfO Zf \/ 1— Zf() —Zf JZ{ t— t() (87)

where zg is the position of the interface at time ¢ = #y. Thus, in terms of the current scaling, the
separation time is ((/1 /Re)'"?), and the inverse of the separation time is the appropriate small
parameter to be used in a thin-layer approximation. Such approximations lead to quasi-steady
pure-fluid layers within which similarity solutions for the dependent flow variables can be derived.
Three qualitatively different parameter regimes with different scalings for the width 6 of the
Boycott layer have been identified:

(a) The buoyancy driving is counteracted by viscous forces, while inertia is negligible
Re< A3, 6~ A7

(b) The buoyancy driving is counteracted by inertial forces, while viscosity is negligible
AP <Re< A, 6~ (RejA)'.

(c) All three terms are of comparable orders of magnitude

Re~ AP, 5~ A7V ~ (Re/N)'2.
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For vessels with constant inclination, Acrivos and Herbolzheimer (1979) developed a theory for
case (a) while Schneider (1982) analyzed case (b). The gap (case (c)) was later bridged by Shaqfeh
and Acrivos (1986), who derived asymptotic expansions for all parameter regimes under the as-
sumption that (Re/A) ' « 1. To present date, no attempt has been made to extend the analysis of
Shagfeh and Acrivos (1986) to vessels with curved boundaries. The remainder of this section is
devoted to the intermediate Reynolds number case (Re ~ A'/3). In the limit when ¢ /R < 1, the
leading order boundary value problem in the Boycott layer reduces to (see Ungarish, 1993,
Section 6.3),

oy

vy v Yy : -2/3
ol 3FaC 3¢ o0 siny(&) + 4 N (88)
_% _
w—&uﬂ at (=0, (89)
szmﬂ/%mﬂ&@’mC:ag (90)
0

where the Reynolds number was chosen to be Re = A3 and ¢ and ¢ are the coordinates along
and orthogonal to the curved wall respectively. In the numerical simulation, the radius was taken
to be R = 1 for which y(¢) = &. The flow field in the mixture region adjacent to the Boycott layer is
similarly described by,

o W Yo\ o, oy
(1+8¢(0))<©_Cw_6_56_f) =4 /3’7(¢(0))a—€3a (91)
s o oY Py Y B
=1y, ARk and ﬂ(¢(0))gi?'—-zi;‘ at { = 9(&), (92)
% —0 as{— oc. (93)

Note that Egs. (89), (90), (92) and (93) provide seven boundary/matching conditions at { = 0, §(&)
and oo whereas the equations for y and ¥ are both third order in {. The additional condition
determines the width 6(&) of the Boycott layer. Solutions to the two boundary value problems are
expanded in Blasius series,

g
M@:AW%O—5@+Im—M>. (96)
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The equations for the first three terms are obtained as,

= Aolf — (] - %é, (97)
fi' = B%[f* — Aif)], (98)
= A~ R = 3 A7)~ 1+ 95) 9)
fi' = BN[AfIfs = LS = 3Af = 3017 + i), (100)

= A0[6f1f5 + 1017 = fify = SA'fs — 10/ 17 — 100:(f1f7 + 31 13)
— 50,31+ £if)] —%3)(1 + 300, + 1584 + 9053), (101)

fs' = Bo[6fif5 + 10f7 = fifs = 5f'fs = 10fafy = 108:(fify' + 3£1'f3)
— 584317 + fif})], (102)

where 2 = (1 4 ¢$(0))(1 — ¢(0))’/n*(¢(0)), and the boundary/matching conditions are given by,

fi(0) =70) =0, fi(1) =7(1) =1, fi(1)=r1), (103)

S0 =n(¢O)f" (1),  f(o0)

The boundary value problems were solved using a shooting method. In the numerical simulation
presented below, the reduced density difference and the initial concentration were taken to be
¢=0.1 and ¢(0) = 0.1 which gives the following values:

7(0) = 4.26760, S = 1.65419, (104)
/(0) = 6.10840, &, = 0.109253, 105
3

7(0) = 22.4316, &, = 0.263938, (106)

to within a tenth of a percent. The series converge rapidly and the difference between using two or
three terms was hardly distinguishable within the range of ¢ values for which comparisons with
the numerical results were made.

In the numerical simulation, a higher concentration of nodes was used in the vicinity of the
curved wall. Adequate resolution of the mixture—pure fluid interface and velocity profiles in the
Boycott layer was obtained using 23869 grid points. Dependent variables were saved at times
t=1t(Re/A)"* =1/96,1/48,...(1/96)...,1. The computations were carried out for a container
with aspect ratio (width to height) L = 1.4 and radius R = 1. The parameters were chosen to be:
A=10° £=10"2 ¢(0) =0.1 and Reynolds number Re = A" The time-step for the Stokes
solver was chosen to be At = 1072, and the time-step for the advection and volume fraction
problems was chosen to be six times smaller in order to comply with the CFL condition.

Fig. 10 shows the initial breakthrough of the Boycott layer into the region of pure fluid at
the top of the vessel. The strong efflux from the Boycott layer pushes a thin layer of particles
from the horizontal mixture—pure fluid interface up into the region of pure fluid and subse-
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Fig. 10. Volume fraction (gray-scale) of particles during the initial breakthrough of the Boycott layer into the pure fluid
region at the top of the vessel, T = 1/12, 3/32,...(1/96)...

quently keeps the particles suspended (Fig. 10(a)—(c)) for a short time-interval. As the efflux is
reversed into the mixture region by a vortex localized to the top of the Boycott layer, it breaks
through the mixture—pure fluid interface and entrains into the mixture bulk (Fig. 10(d)—(f)).
Shortly after having been formed, the particle depleted region inside the mixture bulk starts to
shrink, and eventually disappears. The reason for this is that the particles at the top of this
region settle in pure fluid and therefore faster than the ones at the bottom of the region where
hindrance effects due to the other particles in the mixture bulk come into play.

Fig. 11 shows concentration contours and streamlines at times 7 = 1/8, 3/8 and 5/8. At an
early stage the flow in the mixture bulk bears a strong resemblance to that predicted by
Schneider (1982) for the high Reynolds number case. Schneider showed that the vertical ve-
locity in the mixture bulk is independent of the horizontal coordinate to leading order. Using
the continuity equation and applying the normal flux conditions at the Boycott interface, the
vertical wall and the mixture-sediment interface, he obtained a purely kinematic solution
qualitatively similar to the one shown in Fig. 11(b). At later times, a characteristic feature of
the flow field is the localized vortex at the top of the Boycott layer causing a strong defor-
mation of the horizontal mixture—pure fluid interface, and a second vortex (Fig. 11(d)) which is
oscillating back and forth between the vertical wall and the reversing primary vortex. As an
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Fig. 11. Volume fraction (gray-scale) and streamlines for the mixture velocity at (a)-(b) T = 1/8, (c)-(d) t = 3/8, (e)—(f)
t=5/8.

effect of the interaction between the two vortices and the hindered settling process, the interface
becomes stratified (Fig. 11(c)). Since the flux in the Boycott layer increases with its length (Eq.
(90)), the strength of the vortices and the corresponding deformation of the interface decreases
with time. At this stage the interface starts to gradually become sharper due to hindered set-
tling effects (Fig. 11(e)). The volume fraction in the sediment region at the bottom of the
container is described by a rarefaction wave of the same type as in the one-dimensional settling
problem. Figs. 10 and 11 imply that the Boycott layer along the curved wall has constant
thickness. This is in agreement with the leading order result of the Blasius series expansion (Eq.
(96)). In the viscous limit (Re < A'?), the Boycott layer in the present configuration has a
constant thickness dyi = 3'/3 ~ 1.44225 (see Ungarish, 1993, Section 6.3 or Holmqvist, 1998)
which is less than 13% smaller than that obtained here (Jp ~ 1.65419). Fig. 12 shows the po-
sition of the mixture—pure fluid interface together with the results from PNK theory (Eq. (87)).
The theoretical position (the solid line) has been adjusted for the initial transient (the forma-
tion of the Boycott layer). The point (#,zp) in Eq. (87) was taken directly from the nu-
merical simulation. The reason why the numerical interface lags behind becomes evident by
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Fig. 12. Position of the mixture—pure fluid interface. The solid line represents the results from PNK theory, the dashed
line PNK theory adjusted for the finite width of the Boycott layer and the dots represent the numerical results.

taking a closer look at Fig. 10 or 11. The finite width of the Boycott layer reduces the hori-
zontal projection of the mixture—pure fluid interface and Eq. (86) must accordingly be modi-
fied to,

dz¢ Re L —x - L —Xxo
Y (/S g VA fiis 107
dr A L — x¢ L—)Cf7 ( )

where Re = A% was substituted in and x, is the intersection of the Boycott interface with the
mixture-sediment interface. Taking xo ~ (24738¢)"/* ~ 0.3 (from Eq. (104)) gives the dashed line
in Fig. 12. Comparisons of the streamwise velocity profile in the Boycott layer and the adjacent
mixture region obtained from the numerical simulation and the Blasius series expansions (starting
at & = xg) are shown in Fig. 13. The adjustment to similarity behavior is observed to be slow.
Although the Boycott layer rapidly adjusts to its near constant width, the viscous sublayer next to
the curved wall grows more slowly and may even have a fractional power dependence on & as in
the case of constant inclination (Shaqfeh and Acrivos, 1986). In addition, for small angles, the
flow in the Boycott layer is strongly influenced by the flow in the mixture bulk and condition (93)
is not applicable.

The Boycott effect is a fundamental phenomenon in separation theory. It is therefore essential
that the basic flow scales are accurately reproduced in the numerical simulations. It should be
noted that no additional constraints were necessary to obtain the quasi-steady pure-fluid layer in
the simulation presented in this section. The Boycott simulation was repeated on the same grid
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Fig. 13. Tangential velocity at T = 1/6 for a few positions along the curved wall. The solid and dashed curves represent
the similarity expansions in the Boycott layer and adjacent mixture region respectively, and the stars and circles rep-
resent the corresponding numerical profiles.

with the FEM-FCT scheme (Lohner, 1988) in place of the slope-limited Roe solver. The en-
trainment process and the complex vortex structure at the mixture—pure fluid interface were
identical to those obtained using the Roe solver, and, although the mixture—pure fluid interface
was slightly sharper, the results in the sediment region suffered from the same type of errors as in
the one-dimensional case (Fig. 4). A third simulation was performed using the first-order finite
volume scheme (the Roe solver without the higher-order correction). In this case, the entrainment
process was not satisfactorily resolved.

5. Conclusion

Numerical simulations of separating mixture flows at moderate to high Reynolds numbers have
been considered. The mixture model was formulated in terms of volume averaged flux densities
(velocities) to ensure well-posedness of the incompressibility constraint. A hybrid discretisation
scheme for mixture flows in general geometries was presented. Time-splitting and pressure-
correction methods were used to achieve faster convergence, by alleviating the CFL condition and
decoupling the incompressibility constraint. The spatial discretisation of the momentum and
continuity equations was obtained by a Galerkin finite element method combined with an upwind
finite difference scheme for the advective terms. A quasi-second-order finite volume scheme based
on a slope-limiting procedure was designed to treat conservation of the dispersed phase. The
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method employs the finite element grid for its implementation, has no free parameters and re-
quires no additional boundary conditions.

The performance of the various discretisation schemes was demonstrated by considering three
fundamental problems from separation technology. The higher robustness of the slope-limited
Roe solver over the traditional FEM-FCT method was shown by comparing the results with the
analytic solution for one-dimensional gravity settling. Spin-up from rest of a mixture of light
particles was studied to validate the numerical treatment of strongly non-linear effects and the
resolution of kinematic shocks representing interfaces between mixture and pure-fluid regions.
The results were found to be in excellent agreement with previous numerical computations by
Amberg and Ungarish (1993). Further verification was given by a comparison between the
boundary layer profiles close to the axis of rotation and those obtained from a modified von
Karman formulation. The latter corresponds to the leading order problem of an expansion in-
troduced by Ungarish and Greenspan (1983) for a two-fluid formulation. The next order problem
suffers from a mathematical deficiency which makes it impossible to satisfy the no-flux condition
at the solid boundary. No such problematic behavior was encountered in the numerical simula-
tion, which seems to indicate that the mixture formulation does not suffer from a similar math-
ematical deficiency.

A simulation of gravity settling underneath a curved wall was performed for the intermediate
parameter regime where both viscous and inertia effects are important. The Boycott layer was
observed to form spontaneously in the simulations. Blasius series expansions were derived for the
flow in the Boycott layer and in the adjacent mixture region. Although the series converge rapidly,
the agreement with numerical results was found to be poor for small angles (see Fig. 9). The reasons
for this appear to be the relatively slow growth of the viscous sublayer on the curved wall and a
strong influence from the flow in the mixture bulk. Initially, the bulk-flow is accurately described by
the kinematic model of Schneider (1982). At later stages, the numerical results reveal a more
complicated behavior, beyond the reach of any existing theory. The flux emerging at the top of
the Boycott layer is reversed into the interior by a localized vortex and entrains into the mix-
ture bulk. A secondary vortex appears on the horizontal mixture—pure fluid interface and starts
to oscillate back and forth between the vertical wall and the primary vortex. The combined effect
of entrainment and vortex motion is a stratification of the horizontal interface. As the flow be-
comes weaker, the interface starts to gradually become sharper due to hindered settling effects. If
adjusted for an initial transient (corresponding to the formation of the Boycott layer) and for the
finite width of the Boycott layer, PNK theory yields good predictions for the position of the
separation front.

In the absence of quantitative concentration and velocity measurements, experimental verifi-
cation of the results presented herein must be limited to comparison with integral flow scales such
as batch separation times and boundary/Boycott layer thicknesses. Since the numerical results
were presented together with asymptotic theories for which experimental verification has already
been obtained, no direct comparison with experiments is warranted at this time. The computa-
tions presented here were performed in axi-symmetric and two-dimensional geometries respec-
tively. Currently, a fully three-dimensional version of the code is being tested. Once up-and-
running, this version might be able to resolve some of the presently unattainable issues, such as
stability and transition of mixture flows in arbitrary geometries. Further development on both the
theoretical and numerical levels is needed for studies involving multi-modal suspensions.
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Although some investigations on the rheology of such mixtures have been performed (Shauly et al.,
1998; Greenspan and Nigam, 2001), fundamental properties such as adequate semi-empirical
expressions for the effective viscosity are still lacking.
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Appendix A
Rate of change of mixture momentum:
0 0 o 3 o
£ (pava-+ (1= Bpere) = pegy (142l +ie) = pe(5-+5¢ ).

Mixture momentum flux:

dpgvava + (1 — @d)pcveve = Pc( e ]d]d 1](:_JC¢> = Pc ( 4 +(Z)jdjd + G- id)—(jqﬁ_ i) >
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The stationary shock-conditions to be satisfied at a concentration discontinuity are given by,
il” =0,
[in-j) = =0,

S jRjR Ejdjd . +_ 1 +
[" <”+¢<1—¢>+ o ) ”] pc{” i

. . . . +
g 1 +
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where n is the local unit-normal at the interface. These conditions express continuity of mixture
velocity, normal particle flux and mixture momentum across the interface.

(I
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Appendix B

Interpolation coefficients:

o) = [(r— ") 4+ 3Au(t —1") + 2 At

2 A2 A2

o — [(t—t”) +2At(t—t”)](pn_l

[(t— )+ At(t — 1)

AL ](p”‘z +O(AF) for "<t <,

Op  [2(t—1")+3At] , [20—1t"+ A -ty 2t —1") + At
o 2AP AP ? 2A2

} P" 2+ O(AP)

for " '< t < .

Appendix C

The finite element bases for X and X} are defined by partitioning the computational domain
2 into K non-overlapping trlangular elements R = U 1%" and representing functions within
each element as tensor-product polynomials on a reference element % defined as the isosceles
triangle with vertices at (0,0), (1,0) and (0,1). The subspaces used in the finite element discreti-
sations are

X} =X = {vle € (@)} 0 (),

Xy = {vlp € PHR)} N AH (),

where subscript 0 refers to homogeneous Dirichlet conditions. P! is the set of tensor-product
polynomials of degree 1 and #"' is the space of all square integrable functions on # whose first
derivatives are also square integrable. The discrete counterpart to (31)—(35) is given by,

3 n 1 71—
(2At%+v0% >]h0 9T 1+¢%fhb,

2 At o o
3pc 3, Awd0, = Ziy — 7,
~ Dl = &)

o . 2At
My, = M, +§9 op,,

7, =p, "' +3p,

where superscript n on /" refers to the dependence on QZ and the tensors have the following
shapes:
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M 0 0
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0 0 M

Ay, . Ay, A

" = (A’fz)T Ang A§3 )
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The projection error is obtained by eliminating iZo’

2vo At
Nl T 8p,.
- dp

3 n \sn 1 T n n
(2—AZ%+V0M >!h0_gg Bh_ﬂi‘hb =

Since dp, is O(At), the method is O(A#).
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